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A N O M A L O U S  A E R O D Y N A M I C  H E A T I N G  O F  
A D E A D - E N D  C A V I T Y  IN AN O N C O M I N G  F L O W  

V. I. Kuznetsov and D. D. Shpakovskii UDC 534.2 

Anomalous aerodynamic heating of a dead-end cavi~ in an oncoming f low is e.werimentally studied 
and discussed. Based on the eAperimental results, a physical model of  the process, i.e., eddy gas .[low 
in the channel o f  the dead-end cavi~ with energy transfer from the external f low, and a mathematical 
model and calculation methods of the process are deveh)ped. 

Anomalous gas heating in a dead-end cavity is, in essence, the heating of the gas up to a temperature 
higher than the stagnation temperature of the main flow that cannot be explained by the customary concepts of 
aerodynamic heating of a body in a steady gas flow. Eiiseev and others [1-3] point to the wave nature of  the 
pressure fluctuations obtained and the temperature rise higher than the stagnation temperature in the cavity. 
Passage of a tbrward wave and a shock wave reflected from the cavity bottom over the gas column is mani- 
fested in intense pressure fluctuations in the cavity and is accompanied by the increase in the stagnation tem- 
perature. This theoretical model of the process contradicts the Wulis equation and laws of conservation, 
according to which the total temperature behind the shock wave does not change. The main goal of  the present 
work is to define the essence of the occurrence of anomalous heating of the dead-end cavity. 

Let us consider a scheme of the experiments conducted in [I-3]. Figure 1 shows the layouts of  the 
cavities relative to an oncoming flow and the configuration of the cut of the leading edges of the cavity. In all 
experiments with different dead-end cavities carried out in different oncoming flows, the main gas flow moved 
along the axis of the dead-end cavity. The gas entered the cavity parallel to its axis, which with its further 
retardation and separated flow over the cavity edges resulted in the phenomenon described above. Theoretical 
calculations for such a physical model are given in [4, 5]; however, the case discussed below is of  different 

nature. 
In the experiments described above, the external flow was directed parallel to the axis, with the excep- 

tion of [1], where the model was blown by the flow at different angles of attack. Consider the process that can 
occur in flow past the dead-end cavity (Fig. 2). If  the flow moves at a tangent to the cavity or, more exactly, 
in parallel with it, the velocity vector at the cavity inlet will be directed as shown on the left in Fig. 2. This 
leads to a velocity gradient with a rapid decrease deep into the cavity, which ultimately causes vortex forma- 
tion in the cavity. On the right in the figure, streamlines are depicted tbr the cavity with a velocity vector 
perpendicular to its axis. This classical model problem was considered in [6] for Reynolds numbers ranging 
from 400 to 2500. As a result, a flow pattern was obtained that differs radically from the wave effect consi- 
dered above. If the flow scheme depicted in Fig. 2 is implemented, then the process must proceed as follows. 
Due to viscosity forces the vortex formation and energy transfer from the external flow to the eddy flow are 
initiated in the cavity. The process of energy transfer leads to an increase in the pressure and temperature of 
the gas in the cavity embraced by the eddy flow. As the total pressure in the cavity becomes higher at all 

points than the total pressure at the inlet, the gas undergoes adiabatic expansion. The time when the eddy flow 
reaches the dead end of the cavity is taken as the beginning of gas outflow from the dead-end cavity. We 
assume that the cavity is filled with the gas from the static pressure in the external flow up to its total pres- 
sure, then the energy is supplied in the tbrm of viscous friction work (actually, both processes can occur si- 
multaneously). Thereafter the gas flows out of  the cavity into the external flow until the pressure inside the 
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Fig. 1. Schemes of blowing of dead-end cavities with different configura- 

tions of their edges. 

Fig. 2. Schemes of  blowing of the cavity in the experiment and the tenta- 
tive flow pattern in the cavity. 

['ABLE 1. Comparison of the Experimental and Calculated Results 
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cavity drops to the static pressure in the main flow stream. Below, the process that occurs 
for the case shown in Fig. 2 or for a similar case. 
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is calculated only 

We carried out a series of  experiments with a dead-end cavity of the following geometry: a = 0.065 m 
as its width; b = 0.013 m as its height; the angle of inclination of the channel axis of the dead-end cavity 
toward the plane was q~ = 30°; the channel length of the dead-end cavity along the median axis was Ld = 0.346 
m. The open end of  the dead-end cavity faced the plane blown by the oncoming air flow with different total 
pressure and stagnation temperature. The air flow moved at a tangent to the plane. In the experiments, mea- 
surements were made of the total pressure and stagnation temperature of the external oncoming flow and of the 
stagnation temperature in the cavity at the base of the dead end. The external oncoming flow was initiated by 
a screw-type compressor  and a nozzle placed on the guiding plane. Results of the experiments with the dead- 

end cavity are provided in Table I. 
We formulated a mathematical model of the process with the following assumptions: 
1. The eddy motion in the channel (Fig. 3) is represented in the form of nonrigid rotating bodies-cir- 

cumferences, for which the radial distribution of velocities and potential flow are taken into account but the 
dimensions and configuration of the vortex are ignored assuming that its diameter is equal to the diameter of 

the channel or its height b; moreover, its displacement along the channel is not taken into account since its 
velocity is incommensurably small as compared to rotary motion (from the experiments with vortices). 

2. It is assumed that the following modes of energy transfer and conversion participate in the process: 
a) energy supply in the form of viscous friction work at the inlet of the dead-end cavity; b) conversion of the 
mechanical energy due to friction in the cavity channel to the internal energy of the gas with an increase in 
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Fig. 3. Physical model of  the process: 1) vortex in the form of a nonrigid 

circumference body; 2) secondary vortices; 3) line indicating the trajectory 
of  flow motion. 

the total pressure and temperature. Heat removal through the cavity walls is neglected (the process is assumed 

to be adiabatic). 
3. Neglect of  "intermediate" and "secondary" eddy flows (Fig. 3) initiated by the main flows. 
4. Friction losses are taken into account in terms of the equivalent diameter and the motion trajectory 

shown in Fig. 3 by the dash-dot line. It is assumed that the total pressure and temperature extend to the entire 
volume encompassed by the eddy streams and change at each instant of  time. 

5. The quantity k does not change. 
With allowance for the assumptions made, we write the system of equations describing the process of 

energy supply into the dead-end cavity: 

/r.L d 
L =  , d r=  
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The obtained system of equations (1) is not closed since the kinematic viscosities v i and v0 for the gas 
in the cavity and at the cavity inlet are not determined. To determine them, we use the following system of 
equations: 

273 + const I " T l .3/2 
, V 0 - -  , 

g 0  = g273 T1 + c o n s t  I P l  

273 + const I " T i .3/2 
, V i - -  . 

g i  = [t273 Ti + c o n s t  I Pi  

(2) 
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In this system of equations 91, Tb Pi, and Ti are the static parameters of the gas determined in terms 
of the calculated stagnation parameters Toi, Tin, Pro, and P0i. The velocity i in the system of equations (1) is 
mean-integral over the cross section, the area of which is F = ha~2. Therefore we supplement the systems of 
equations (!) and (2) with a system of equations describing the circumferential-velocity distribution over the 
cross section: 

% b t c~rb ..)1/3 cci~ b 
const~- b 2, h = - ~ -  , - , 

b 
- ~ - h  b l Cch~ 

c~l = V~ max ~ In b - 2- - - -h  ' c~2 = 6 b ' 
- - - h  
2 

(3) 

C~plh + ctp 2 !-~ -- h) 
C-~ 

b 
2 

In (3), consideration is given to a half of the channel since the velocity distribution in the second half 
of the vortex is identical. 

The system of equations (3) is constructed on the basis of the relations taken from [7]. For the systems 
of equations (1)-(3) to become complete, we add the boundary conditions in the tbrm of geometric parameters 
of the dead-end cavity % deq, and Ld and flow parameters at the dead-end cavity inlet determined from experi- 
ment, namely, c0, P01, Tol, Tb and P~. As a result, we arrive at a system of the equations describing a time- 
dependent process. The calculation results are given in Table 1. They differ from the experimental data in the 
increment in stagnation temperature AT0 by 10-15% and in absolute values of the stagnation temperature To2 
by no more than 5%. 

N O T A T I O N  

L, length of the curve circumscribed by the particle moving around the eddy flow periphery; x, current 
coordinate around the eddy flow periphery; xl, current coordinate along the vortex median; deq, equivalent di- 
ameter of the cross section of the dead-end cavity; /', conditional length; h, thickness of the peripheral layer of 
the vortex with potential flow; F, cross-sectional area; t, current time of the process; Ccir, circumferential velo- 
city at the vortex periphery; c, mean integral circumferential velocity over the cross section; c0, velocity of the 
external flow above the inlet to the cavity; as, velocity of  sound; c~1 and c~2, circumferential vortex velocity 
in the potential part of flow and in the viscous-flow region; V~max, maximum circumferential velocity of the 
vortex; T0b stagnation temperature of the oncoming flow; Toi, current stagnation temperature in the cavity; Ti, 
current static temperature in the cavity; T1, static temperature of the oncoming flow; T02, stagnation tempera- 
ture in the cavity at the end of energy supply; AT 0, absolute increase in the stagnation temperature in the dead- 
end cavity; P01, total pressure of the oncoming flow; Poi, current total pressure in the cavity; Pb static pressure 
of the oncoming flow; Po2, total pressure in the cavity at the end of energy supply; Pl, static density of the 
oncoming flow; P0b density of the retarded oncoming flow; P0, current static density in the cavity; P0i, current 
density of the retarded flow in the cavity; R, gas constant; Atr.ch, friction work in the channel; Afr.i, friction 
work of the external flow transferred to the gas in the cavity due to viscosity; vi, current kinematic viscosity 
in the cavity; v0, kinematic viscosity of the external flow; gi, cirrent dynamic viscosity in the cavity; p~, dy- 
namic viscosity of the external flow; ~t273, dynamic viscosity under standard atmospheric conditions; M, Mach 
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number; k, adiabatic exponent; ~h, friction coefficient for the dead-end cavity channel; ~, friction coefficient 
for the inlet of the dead-end cavity; Rech, Reynolds number for the dead-end cavity channel; Re, Reynolds 
number for the external flow at the dead-end cavity inlet. Subscripts: d, dead-end; eq, equivalent; cir, circum- 
ferential; s, sound; fr, friction; ch, channel; max, maximum. 
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